A simplified method to measure the diffusion tensor from seven MR images.
نویسندگان
چکیده
Analytical expressions of the diffusion tensor of water, D, and of scalar invariants derived from it, are given in terms of the intensities of seven diffusion-weighted images (DWIs). These formulas simplify the post-processing steps required in diffusion tensor imaging, including estimating D in each voxel (from the set of b-matrices and their corresponding DWIs), and then computing its eigenvalues, eigenvectors, and scalar invariants. In a study conducted using artifact-free DWIs with high diffusion weighting (bmax approximately 900 s/mm2, maps of Trace(D) and the Relative and Lattice Anisotropy indices calculated analytically and by multivariate linear regression showed excellent agreement in brain parenchyma of a healthy living cat. However, the quality of the analytically computed maps degraded markedly as diffusion weighting was reduced. Although diffusion tensor MRI with seven DWIs may be useful for clinical applications where rapid scanning and data processing are required, it does not provide estimates of the uncertainty of the measured imaging parameters, rendering it susceptible to noise and systematic artifacts. Therefore, care should be taken when using this technique in radiological applications.
منابع مشابه
Anisotropically weighted MRI.
The intensity of an isotropically weighted MR image is proportional to a rotationally invariant measure of bulk diffusion, Trace(D) (where D is the effective diffusion tensor). Such images can be acquired from as few as two diffusion-weighted images (DWIs). Analogously, the intensity of an anisotropically weighted MR image is proportional to a rotationally invariant measure of diffusion anisotr...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملDifferentiation of active tumor from edematous regions of glioblastoma multiform tumor in diffusion MR images using heterogeneity analysis method
Background: Due to intrinsic heterogeneity of cellular distribution and density within diffusion weighted images (DWI) of glioblastoma multiform (GBM) tumors, differentiation of active tumor and peri-tumoral edema regions within these tumors is challenging. The aim of this paper was to take advantage of the differences among heterogeneity of active tumor and edematous regions within the gliobla...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملShape anisotropy: tensor distance to anisotropy measure
Fractional anisotropy (FA), defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 39 6 شماره
صفحات -
تاریخ انتشار 1998